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Lanthanideand actinide intermetalliccompoundsdisplay a wide
rangeof correlated-electronbehavior, including ferromagnetism,
antiferromagnetism,nonmagnetic(Kondo) groundstates,and so-
called“non-Fermiliquid” (NFL) behavior. Theinteractionbetween
f electronsandtheconductionbandis a dominantfactorin deter-
miningthegroundstateof agivensystem.However, latticedisorder
cancreatea distribution of interactions,generatingunusualphysi-
calproperties.ThesepropertiesmayincludeNFL behavior in many
materials.In addition, lattice disordercan causedeviations from
standardKondobehavior thatis lessseverethanNFL behavior. We
will review the lattice disordermechanismwithin a tight-binding
modelandpresentmeasurementsof the YbBCu4 andUPdxCu5 � x

systemsdemonstratingthe applicability of the model.Thesemea-
surementsindicatethatwhile theYbBCu4 systemappearsto bewell
ordered,bothsiteinterchangeandcontinuousbond-lengthdisorder
occur in the UPdxCu5 � x series.Nevertheless,the measuredbond-
lengthdisorderin UPdCu4 doesnot appearto beenoughto explain
theNFL propertiessimplywith this Kondodisordermodel.

Keywords: disordered materials; non-Fermi liquids;
Kondo effect.

1. Introduction
Many heavy-fermion f -electroncompoundsexhibit magneticand
electronicpropertieswhich do not behave as expectedfrom the
LandauFermi-liquid theory thought to be applicableto heavy-
fermion systems.When theseanomaliesincludea certainsubset
of behavior, the materialsaresaidto benon-Fermiliquids (NFL)
(for a review, seeColemanet al., 1996).Thesebehaviors include
logarithmic or weak power law dependencesof the Sommerfeld
specificheatcoefficient ��� T ��� C � T ��� T andthemagneticsuscep-
tibility 	 � T � , anda deviation from T 2 of the temperaturedepen-
denceof the electricalresistivity as T 
 0 K (typically linear).
Most but not all NFL materialsare known to be crystallograph-
ically or chemicallydisordered,but theoreticaltreatmentsdiffer
on whetherthis disorderis importantto the NFL behavior (Mil-
lis, 1993,Bernalet al., 1995).

Onefocusof researchhasbeento find NFL behavior in well-
orderedmaterials.However, suchmaterialsareby definition sto-
ichiometric, and thereforethe single-impurity Andersonmodel

(SIAM) shouldno longerapply at somelevel. Unfortunately, the
periodic Andersonmodel (PAM) that shouldapply to f -ions on
a periodic, well-orderedlattice, has not been solved, although
progressis beingmade(Tahvildar-Zadehet al., 1997).In any case,
thesearchfor well-orderedNFL materialsmustnecessarilyinclude
attemptsto isolatecoherenceeffectsaswould bedescribedby the
PAM from thoseeffectsthatwill requirea truly new descriptionof
thegroundstate,suchasquantumcritical behavior (Millis, 1993).

Lattice disorderplaysa pivotal role both in attemptsto under-
standcoherenceeffects in Andersonlattice systemsand in the
searchfor NFL mechanismsandmaterials.In Andersonlatticesys-
tems,latticedisorderis a potentialmaskof realcoherenceeffects
becauseit cancreatea distribution of behavior in a materialthat
may be difficult to assignto the lattice disorder. In NFL studies,
disordercan causeNFL behavior (Bernal et al., 1995, Miranda
al., 1997)andthereforecanalsobe viewed asa maskto discov-
ering well-orderedNFL materials.Moreover, the role of disorder
in generatingNFL behavior is still anopenquestion.Kondodisor-
der models,wherebya distribution of Kondotemperatures(TK ’s)
extendsto sufficiently low temperatures,have beenshown to be
capableof generatingNFL behavior without including any es-
sentially new physicalmechanisms.Recently, Castro-Netoet al.
(1998)have proposedthat thepresenceof sufficient disorder(lat-
tice or otherwise)candrive a systeminto a Griffiths’ phase,creat-
ing a distributionof quantumcritical points.A Griffiths’ phasehas
thepotentialof generatingmoreuniversalbehavior thantheKondo
disordermodel,andsomaybeabettercandidatefor NFL behavior
in materialsthatareknown to possesssomelatticedisorder.

Searchingfor latticedisordercanbea muchmorecomplicated
andself-deceiving task thanmany researchersoutsideof crystal-
lographyrealize.A commonprocedurein characterizingany ma-
terial is to performa powder diffractionmeasurementandto per-
form a Rietveld refinementof a proposedcrystalstructureat room
temperature.If any lattice disorderis indicatedby enhanceddis-
placementparameters(the u2’s), it is often ignoredin this proce-
durebecauseonly a temperaturedependentmeasurementis capa-
ble of discerningbetweena large u2 that is causedby significant
weight in thephononspectrumat low frequencies(i.e. a low De-
bye temperaturefor a given site) andonethat is causedby static
(i.e.non-phonon)disorderdueto, for instance,off-centerdisplace-
mentsor site-interchangebetweentwo atomic specieswithin a
given compound.Even if temperaturedependentdiffraction data
arecollected,it canbedifficult to identify thesourceof disorderif
it is particularlypathological,asin a casewheresite-interchange
occursbut insufficientcontrastexistsbetweenthescatteringfactors
for the two speciesof atoms(for example,seeChauet al., 1998,
for thecaseof UPdCu4).

X-ray-absorptionspectroscopy canbeanexcellenttool for iden-
tifying certainkinds of disorderwhen usedin conjunctionwith
diffraction results.Perhapsthe mostuniquefeatureis the ability
to uniquely probe the local atomic arrangementarounda given
speciesof atom with the x-ray-absorptionfine-structure(XAFS)
technique.With this measurement,onecandistinguishbetweena
givenatomicspeciesthat is sitting on two distinctsitesin a struc-
tureaslong asthosetwo siteshave significantdifferencesin their
local atomicarrangement.

Theremainderof thispaperbeginswith adiscussionof how dis-
ordercanaffect magneticsusceptibility. ExperimentalXAFS data
will be presentedfor two systems:the Andersonlattice YbBCu4

systemandthe NFL UPdxCu5 � x system.The possibility of B/Cu
site interchangewill beexplored,andtemperaturedependentdis-
placementparameterswill becarefullyconsideredto searchfor any
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2 DISORDER IN LANTHANIDE AND ACTINIDE INTERMETALLICS

lattice disorder. Many of the detailsof the experimentalanalysis
andresultsaredescribedelsewhere(Boothet al., 1998,Lawrence
et al., 2001,Baueret al., 2001).

2. Lattice disorder in the single impurity model
A hallmarkof theSIAM is thepronouncedmaximumin themag-
neticsusceptibilitythatoccursfor J � 1� 2 astheKondosingletis
formedat low temperatures.As onedecreasestemperaturesfrom
well above TK , 	 � T � increasesfollowing a typical Curie-Weiss
form. This increaseslows down nearTK andatapproximatelyone-
third of TK , 	 � T � begins to decrease,going to a constantat zero
temperaturethat is inverselyproportionalto TK . The relative size
of themaximumin 	 � T � to thezero-temperatureconstant	 � 0� is
only afunctionof thetotalangularmomentJ onthe f ion, with the
maximum	 � T � decreasingwith decreasingJ (Rajan,1983).

Anotherway to decreasetherelative sizeof themaximumis to
includelattice disorder. Suchdisorderwill producea distribution
P � TK � of Kondotemperatures.Thesusceptibilitycanbecalculated
with P � TK � anda Bethe-ansatzcalculationof thesusceptibilityof
a singleKondoimpurity, 	 � T  TK � (Rajan,1983):

	 � T ���
�
	 � T  TK � P � TK � dTK � (1)

P � TK � is calculatedby startingwith theexpessionfor TK :

TK � EF e
� 1��� �����  (2)

whereEF is theFermienergy, � is thedensityof statesat theFermi
level and � is theconduction-electron/local-momentexchangeen-
ergy. Thecouplingenergy Vtot is relatedto theexchangeenergy in
Kondotheorysimply by ��� V 2

tot ��� f , where � f is the f -level en-
ergy. At this stage,we have describedthegenericKondodisorder
modelput forth by Bernalet al. (1995).Wenow chooselatticedis-
orderasthemicroscopicorigin of theKondodisorder. In orderto
includethe lattice,weusea tight-bindingapproximationto obtain
thecontribution to thecouplingenergy of eachpair of atomsA ( f
ion) andB (assumingd electronsin theconductionband):

VA � B ��� f d h̄2

me

� r5
A f r

3
Bd � 1� 2

R6
A � B

 (3)

whererX � is the radiusof the electronicshell with angularmo-
mentum  for atom X (tabulated by Straub& Harrison,1985),
and R is the bond length betweenthe atomswith  !� f and d.
The coefficient � f d dependsonly on the  ’s and the bond sym-
metry (seeAppendixB in Harrison& Straub,1987).We will as-
sumeall bondsare " -bonds.Thetotalhybridizationenergy is then
Vtot �$# A � BpairsVA � B. Within thistight-bindingapproach,calculated
energiesareoften too high comparedto experimentby a factorof
two (Harrison& Straub,1987).However, we areonly interested
in relative trendsbecausewe chooseotherparameters(suchasEF

and � ) to accountfor this absoluteerror.
With thismodelasaframework, theconnectionbetweenneigh-

boring speciesis madethroughrB , and throughthe actualbond
length with RA � B. Therefore,bond-lengthdisorderwill createa
distributionof VA � B’sby replacingRA � B with adistributionof bond
lengths,andsite interchangewill createa distribution of VA � B’s by
varyingtherB’s.An importantdifferencebetweenthesetwo types
of disorderis that bond-lengthdisorderis definedto be continu-
ous in this model (we will usea Gaussiandistribution) andsite-
interchangeis definedto be discrete:if one considersonly the

nearestneighborsin a calculation,thereareonly a finite number
of possiblecombinationsof thevariousVA � B terms.

Beforewe candemonstratethis model,we needto pick a sys-
tem for which we can perform the sum over VA � B. Considerthe
caseof theC15b structurethat is formedby somecompoundsof
the form ABCu4. All atomssit on thecubic 4̄3m f cc lattice,with
A atomssitting on the4a siteat (0,0,0),B atomson the4c sitesat
(0.25,0.25,0.25)andCuatomson16e sitesformingacorner-shared
tetrahedralnetwork centeredat (0.75,0.75,0.75).Band structure
calculationson theC15b materialYbAgCu4 indicatethat the Cu
andAg d electronsmake themaincontributionsto theconduction
band(MonachesiandContinenza,1996).Therefore,in thecalcu-
lationsthatfollow, wewill sumover the12A-Cunearestneighbors
at % 2.93Å andover the4 A-B next nearestneighborsat % 3.06
Å, asshown in Fig. 1(a).We alsoassumethat EF and � arefixed
within a givencompoundanddonot have theirown distributions.

2.93 Å

2.49 Å

3.06 Å

2.93 Å

(a)

(b)

Figure 1
The local structurein the C15b crystal structure.Panel (a) shows the
local structurearoundthe f -ion (atomA), but alsorepresentstheenvi-
ronmentaroundatomB by switchingall A andB atomsin the panel.
Panel(b) shows the local structurearoundtheCu atoms.Bondlengths
arefor YbAgCu4.

Figure 2 shows how the additionof (continuous)bond-length
disordercan affect the susceptibilitywithin this Kondo disorder
model.The effect on the actualwidth of the distribution is pro-
nounced,with only % 0.01 Å of extra bond-lengthdisordernec-
essaryto producea width of the P � TK � of % 40%. Surprisingly,
this apparentlylarge width of P � TK � haslittle effect on the cal-
culated	 � T � . In fact,latticedisordercontinuesto have little effect
on 	 � T � until onereachesaDebye-Wallerwidth of about"&% 0.04
Å. At this point, a significantamountof weight in P(TK) exists at
lower temperatures.A previousstudyof theKondodisordermodel
(Bernalet al., 1995)hasshown that if enoughweight exists near
0 K, logarithmicdivergencesin themagneticsusceptibilityandthe
heatcapacityaregenerated.Moreover, it hasalsobeenshown (Mi-
randaet al., 1997)thata linear temperaturedependenceto there-
sistivity is also generatedwhen enoughlow-TK weight exists in
P � TK � . Therefore,oneshouldappreciatehow little intrinsic bond-
lengthdisorderis necessaryto producesucha situation.Although
sucha distortionwould be difficult to attainby applyingexternal
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pressure,it is quitecommonto seechangesin local bondlengths
of this magnitudewith chemicaldoping.

Anothermechanismfor creatingadistributionof Kondotemper-
aturesis site interchange,wherebytwo atomicspeciesthatnomi-
nally sit on distinctsiteshave a propensityto exchangesites.The
ideaspresentedhereareeasilyappliedto off-stoichiometricsam-
pleswhere,for instance,in UPd0 ' 5Cu4 ' 5 onecanexpectto find cop-
peratomson 4c sites,even in thenominalstructure.Thecasewe
considernow is whenin ABCu4, somepercentageof the B atoms
interchangesiteswith copperatoms.In this case,a distribution
of possiblelocal environmentsaroundthe f -ion sitesis created.
Considerthenominallyorderedcaseshown in Fig. 1(a)with A as
uraniumand B as Pd, as in UPdCu4. If each4c site hasa 25%
probability of being Cu rather than Pd, then each16e site as a
25/4=6.25%chanceof beingPdratherthanCu(four timesasmany
16e sites).With theseprobabilities,a binomialdistribution of pos-
sibleenvironmentscanbecalculated.Usingvaluesof EF and �(�)� f

from Boothet al. (1998),wecancalculateadiscrete distributionof
Kondotemperatures,asshown in Fig. 3.As shouldbeimmediately
appreciated,thereis roughlyequalweightfor Kondotemperatures
rangingfrom % 100K to 250K with thisdegreeof siteinterchange.

Figure 2
(a)Thecalculateddistributionof KondotemperaturesassumingaGaus-
sian distribution of near-neighbor bond lengths in the C15b crystal
structureof YbAgCu4. Otherinput parameterssuchasatomicspecies,
EF, and *,+.- f werechosento give TK=150K. (b) Thecalculated/10 T 2
usingthedistributionsin panel(a).

A materialthatsiteinterchangescanbethoughtof asamaterial
that is chemically“self-doped” in that ions with differentatomic
radii now sit on nominally the samesites.Suchsite interchange
canalsocreatea distribution of bondlengths,asdiscussedabove.
For instance,theatomicradiusof Cuis % 1.57Å, while Pd’satomic
radiusis % 1.79Å. Therefore,local distortionsof 0.2 Å may ex-
ist in thelocal environmentaroundU atoms.Consequently, if site
interchangeexists, somelevel of bond-lengthdisorderlikely also
exists.Wehavecalculatedtheeffectof bond-lengthdisorderonthe
distribution of TK ’s anddisplaytheresultsin Fig. 3(b).Thecalcu-
lationsshow thatthediscretenatureof theunderlyingdistribution

is quickly washedoutby abond-lengthdisorderof only about0.01
Å. This resultatteststo theoverwhelmingsensitivity of thismodel
to bond-lengthdisorder. Again,significantweight is not generated
in thelow TK region until about0.04Å of disorderis included.
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Figure 3
(a) The discretedistribution of TK ’s basedon 25% Pd/Cusite inter-
changein UPdCu4. (b) Thesamedistribution asin panel(a) convolved
with theindicatedamountof bond-lengthdisorder.

To summarizethe resultsof this section,both continuousand
discretedistributionsof Kondotemperaturescanbegeneratedwith
various types of disorder. Truly discretedistributions seemun-
likely, sinceeven when the conditionsnecessaryto createa dis-
cretedistributionexist, namelysomekind of chemicalsubstitution
occurs,thesesubstitutionswill alsogeneratesomebond-lengthdis-
order, which will quickly overwhelmthediscretecharacterof any
P � TK � . However, the width of a distribution createdby chemical
substitutioncanreadily be quite large, thusenhancingthe overall
width whenbond-lengthdisorderis included.

3. Experimental examples

3.1. Experimental details

XAFS experimentswere performedat the B edgesfor B=Tl,
In, Cd andAg in samplesof YbBCu4 andat theU LIII , Pd K and
Cu K edgesfor membersof theUPdxCu5 � x series.Datawerecol-
lectedonBL 4-3at theStanfordSynchrotronRadiationLaboratory
(SSRL)usinga half-tunedSi(220)doublecrystalmonochromator.
Sampleswereground,typically passedthrougha 30 3 m sieve and
brushedonto scotchtapeto obtaina uniform thickness.Stripsof
tapewerestackedto obtainanabsorptionjumpatthevariousedges
of lessthanunity. The YbBCu4 samplesarethe sameflux-grown
crystalsdescribedin Sarraoet al. (1999).Samplepreparationof
the UPdxCu5 � x samplesis consistentwith thatdescribedin Chau
et al. (1998), and will be describedelsewhere(Lawrenceet al.,
2001).Sampleswith 1 � 0 4 x 4 1 � 5 show NFL behavior both in
resistivity andmagneticsusceptibilitymeasurements.
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3.2. Kondo coherence and YbBCu4

In a recent paper, the propertiesof many membersof the
YbBCu4 serieswerecompared(Sarraoet al., 1999).Kondotem-
peraturesrangefrom % 60K for YbZnCu4 to % 750K for YbTlCu4.
Althoughmany propertiesof thesematerialscanbeexplainedwith
theSIAM, 	 max�5	 � 0� wassignificantlylessthanpredictedby the
SIAM for YbZnCu4, YbCdCu4 andYbMgCu4. Thepossibilitythat
crystalfieldswereresponsiblefor thisdisagreementhasbeenruled
outby recentinelasticneutronscatteringmeasurements(Lawrence
et al., 2001).As is clear from Fig. 2, the reductionin 	 max�5	 � 0�
could very easilybe due to lattice disorder. If this final possibil-
ity is ruled out, thencoherenceeffectscanbe seriouslytaken as
a possibleexplanation,openingthedoor for comparisonsto PAM
theories.
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Figure 4
The Fourier transform (FT) of k3 /10 k 2 for (a) YbAgCu4 and (b)
YbCdCu4. Theouterenveloperepresents6 theamplitudeandtheoscil-
latory line within theenvelopeis therealpartof thecomplex transform.
Thesetransformsarefrom 2.5-15Å � 1 andGaussiannarrowed by 0.3
Å � 1. Fits arefrom 2.0to 3.2Å.

SincetheYb LIII andCuK edgesnearlyoverlap,werestrictthis
studyto the XAFS from the B atoms.We searchedfor two kinds
of disorder:B/Cu site interchange,asindicatedby thepresenceof
a shortB-Cu bond(seeFig. 1(b)), andany otherdisorderby mea-
suringthe temperaturedependenceof theB-Cu andB-Yb Debye-
Waller factorsandcomparingthemeasurementsto thecorrelated-
Debyemodel(Crozieret al., 1988).

TheXAFS techniqueis very well suitedfor searchingfor B/Cu
siteinterchangein thesecompoundsbecausethenominallocalen-
vironmentaroundtheB (4c) sitesis very differentthanaroundthe
Cu (16e sites).As shown in Fig. 1, the nearest-neighborsaround
the4c (B) sitesare12 copperatomsat % 2.9 Å, followedby 4 Yb
atomsat % 3.06 Å. This environmentdiffers from the 16e sites,
whichhave6 copperneighborsat % 2.5Å. Our taskis thereforere-
ducedto looking for a peakin theXAFS spectrumcorresponding
to aB-Cuneighborat % 2.5Å, which is % 0.4Å shorterthanin the
nominalstructure.
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Figure 5
Themeasuredvariance( 7 2) of thebond-lengthdistributionfor theB-Cu
pairsat 8 2.93Å andtheB-Yb pairsat 8 3.06Å for B=Tl, In, Cd and
Ag. Thefits areto acorrelated-Debyemodel,asdescribedin thetext.

Detailsof the datareductionmethodscanbe found elsewhere
(Lawrenceet al., 2001).Thedataarepresentedandfit in r-space.
Figure4 shows datafor YbCdCu4 andYbAgCu4, usingonly scat-
tering pathscorrespondingto the nominal structure,that is, site
interchangewasnot included.The fit quality is very high. When
someB/Cu site interchangeis includedin the fit, the fit quality
doesnot improve significantly, andwe placeanupperlimit of 5%
of theB atomspossiblysitting on16e sites.

With siteinterchangeremovedasa potentialsourceof disorder,
wechoosethenominalcrystalstructurefor ourfitting model.Data
werecollectedat varioustemperaturesbetween20 K and300 K.
Thevarianceof theB-CuandtheB-Yb bond-lengthdistributionare
shown in Fig. 5. Thevarianceresultswerethenfit to thefollowing
equation:

" 2
fit
� T ���9" 2

stat : F � T  ΘcD � (4)

where " 2
stat is a temperatureindependentoffset due to positional

disorderand F � T  ΘcD � is given by the correlated-Debyemodel,
with ΘcD asthe correlated-Debyetemperature.The fits shown in
Fig. 5 usea ΘcD ; 250 K for all pairs,anda maximumlevel of" 2

stat of < 0.001Å2 wasobtained.Theestimatederroron this mea-
surementof " 2

stat is roughly0.0005Å2, soall of thesemeasurements
aregenerallyconsistentwith no latticedisorder.

3.3. Disorder models and NFL behavior in UPdxCu5 � x

Our previous study(Booth et al., 1998)of UPdCu4 found that% 25%of Pdatomssit on nominallyCu sites.As shown in Figs.2
and3, this level of site interchangewill have a largeeffect on the
measuredmagneticsusceptibility. Therefore,thedisordermustbe
accountedfor in any theoryof themagneticsusceptibilityin these
materials.By including % 0 � 05 Å of additionalbond-lengthdis-
order, themagneticsusceptibilitycouldbereasonablyreproduced
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by themodelin Sec.2. Theadditionof thisextradisorderwasnec-
essaryto obtainenoughweight in theP � TK � distribution near0 K
to generatetheNFL behavior. However, it is alsopossibleto create
a collection of 0 K quantumcritical pointswith sufficient disor-
der. Sucha phaseis calleda Griffiths’ phase.Within theGriffiths’
phasemodel,a rangein phasespaceis createdthatmightbecalled
a “critical line” at 0 K. In UPdxCu5 � x this line would extendfrom
x ; 1.0 to above 1.5.At thepresenttime, it is difficult to directly
comparetheKondodisorderandGriffiths’ phasemodelsbecause
thereis no Griffiths’ phasecalculationstartingfrom a measured
amountof latticedisorderandarriving atamagneticsusceptibility.
In any case,weexpectthatlessdisorderis necessaryin aGriffiths’
phasemodelthanin a Kondodisordermodel.It is thereforevery
importantto testwhethertheassumedadditionof % 0 � 05 Å of
bond-lengthdisordercanbeverifiedby experiment.
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Figure 6
Thebond-lengthdistributionvariancefor theU-Cupairsat 8 2.93Å as
afunctionof x in UPdxCu5 � x. The“cold” resultsarefor thelowesttem-
peraturecollectedfor thatvalueof x, between4-20K. 7 2

static wasdeter-
minedby fits of thetemperaturedependentdatato thecorrelated-Debye
model,asdescribedin thetext. Thehashedareashows theapproximate
amountof disordernecessaryfor latticedisorderto fully explain NFL
behavior in thex=1.0and1.5compoundsbasedon theKondodisorder
model.

Sucha verification requiresa study of many membersof the
UPdxCu5 � x seriesin orderto betterdeterminecertainfactorssuch
asthesite interchangeandamplitudereductionfactors(S2

0’s). We
have performedXAFS measurementsof sampleswith variousx’s,
andhave successfullyisolatedtheDebye-Waller factorsfor theU-
Cunearest-neighborpeaks.Thesefits arecomplex becausethesite
interchangemustbe known (asmeasuredfrom the Pd edgedata)
andthenappliedto theU edgefits sothatthenumberof U-Pd(16e)
pairs underneaththe main U-Cu(16e) peakcan be properly ac-
countedfor. In eachcase,the Cu edgefits were usedas a cross
check.Thesedatawerecollectedasa functionof temperature,and
thesameanalysisasdescribedin Sec.3.2.wasapplied.Theresults
aresummarizedin Fig. 6.

Interestingly, althoughsomeresidualstaticdisorderis measured
(especiallyfor x=1), themeasuredlevel of disorderis lessthanthat
requiredfor this Kondo disordermodel for all x. Furtherdetails
will begivenin a futurearticle(Baueret al., 2001).

4. Discussion and Conclusions
We have tried to demonstratethesignificanceof latticedisorderin
f -electronsystems,bothasapotentialsourceof “uncharacteristic”
behavior in thetemperaturedependenceof materialsthatotherwise

obey a singleimpurity model,andin systemswherethe low tem-
peraturepropertiesarenot well describedby any model,namely
the non-Fermiliquids. The problemof identifying grossdisorder
andapplyingknowledgeof this disorderis relatively straightfor-
ward whenthe tight-bindingapproximationis employed,but it is
neverthelessimportant to recognizecertain distinctions.For in-
stance,althougha small amountof lattice disordercan produce
a very wide distribution of TK ’s, sucha distribution canstill pro-
ducea magneticsusceptibilityconsistentwith no disorder. How-
ever, if enoughdisorderexistssuchthatweightat low TK ’s devel-
ops, large effects in the magneticsusceptibilitycanbe expected,
possiblyevenNFL behavior.

Applying theseconceptsto theYbBCu4 series,we find that lat-
tice disorderis likely not thecauseof deviationsfrom theSIAM.
We now believe that no otherexplanationexists for thesedevia-
tionsotherthancollective effectsthatareonly possiblein a lattice
of f -ions,that is, someform of thePAM is necessaryto describe
thedeviationsfrom theSIAM. Wenotethatotherbehavior is con-
sistentwith a slower-than-expectedcrossover from the low tem-
peratureFermi liquid stateto the high temperaturelocal moment
state(Lawrenceet al., 2001).This resultlikely correspondsto the
“protractedscreening”recentlypredictedfor theAndersonlattice
(Tahvildar-Zadehet al., 1997).

Our previous measurementsof UPdCu4 demonstratedthe im-
portanceof accountingfor Pd/Cusiteinterchangein understanding
the magneticandelectronicproperties.However, a closerlook at
theU-Cubond-lengthdisorderindicatesthattheredoesnotappear
to beenoughfor a simpleKondodisordermodelto apply, opening
the door to other theoriesthat includedisorder, suchas the Grif-
fiths’ phase.
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